#include <bits/stdc++.h>
#define ll long long
#define endl "\n"
#define fori(n) for (ll i=0; i<n; i++)
#define forj(n) for (ll j=0; j<n; j++)
#define fork(n) for (ll k=0; k<n; k++)
#define Sort(a) sort(a.begin(),a.end())
#define pd pair<ll, ll>
#define YES cout<<"YES"<<endl
#define NO cout<<"NO"<<endl
using namespace std;
// ncr
/* void prllNcR(ll n, ll r)
{
// p holds the value of n*(n-1)*(n-2)...,
// k holds the value of r*(r-1)...
long long p = 1, k = 1;
// C(n, r) == C(n, n-r),
// choosing the smaller value
if (n - r < r)
r = n - r;
if (r != 0) {
while (r) {
p *= n;
k *= r;
// gcd of p, k
long long m = __gcd(p, k);
// dividing by gcd, to simplify
// product division by their gcd
// saves from the overflow
p /= m;
k /= m;
n--;
r--;
}
// k should be simplified to 1
// as C(n, r) is a natural number
// (denominator should be 1 ) .
}
else
p = 1;
// if our approach is correct p = ans and k =1
cout << p << endl;
} */
//nCr%p
/* unsigned long long power(unsigned long long x,
ll y, ll p)
{
unsigned long long res = 1; // Initialize result
x = x % p; // Update x if it is more than or
// equal to p
while (y > 0)
{
// If y is odd, multiply x with result
if (y & 1)
res = (res * x) % p;
// y must be even now
y = y >> 1; // y = y/2
x = (x * x) % p;
}
return res;
}
// Returns n^(-1) mod p
unsigned long long modInverse(unsigned long long n,
ll p)
{
return power(n, p - 2, p);
}
// Returns nCr % p using Fermat's little
// theorem.
unsigned long long nCrModPFermat(unsigned long long n,
ll r, ll p)
{
// If n<r, then nCr should return 0
if (n < r)
return 0;
// Base case
if (r == 0)
return 1;
// Fill factorial array so that we
// can find all factorial of r, n
// and n-r
unsigned long long fac[n + 1];
fac[0] = 1;
for (ll i = 1; i <= n; i++)
fac[i] = (fac[i - 1] * i) % p;
return (fac[n] * modInverse(fac[r], p) % p
* modInverse(fac[n - r], p) % p)
% p;
} */
//ll M=998244353;
// GRAPH
// SIEVE
/* const ll N = 10002;
vector<ll> lp(N+1);
vector<ll> pr;
void Sieve()
{
for (ll i=2; i <= N; ++i) {
if (lp[i] == 0) {
lp[i] = i;
pr.push_back(i);
}
for (ll j = 0; i * pr[j] <= N; ++j) {
lp[i * pr[j]] = pr[j];
if (pr[j] == lp[i]) {
break;
}
}
}
} */
// BINPOW
ll power(ll x, ll y, ll p)
{
ll res = 1; // Initialize result
x = x % p; // Update x if it is more than or
// equal to p
if (x == 0) return 0; // In case x is divisible by p;
while (y > 0)
{
// If y is odd, multiply x with result
if (y & 1)
res = (res*x) % p;
// y must be even now
y = y>>1; // y = y/2
x = (x*x) % p;
}
return res;
}
/* vector<long long> trial_division2(long long n) {
vector<long long> factorization;
while (n % 2 == 0) {
factorization.push_back(2);
n /= 2;
}
for (long long d = 3; d * d <= n; d += 2) {
while (n % d == 0) {
factorization.push_back(d);
n /= d;
}
}
if (n > 1)
factorization.push_back(n);
return factorization;
} */
/* ll MODFact(ll n, ll p)
{
if (n >= p)
return 0;
ll result = 1;
for (ll i = 1; i <= n; i++)
result = (result * i) % p;
return result;
}
ll MOD=998244353; */
ll MOD=998244353;
int main()
{
ios::sync_with_stdio(false);
cin.tie(nullptr);
ll t,i;
t=1;
cin>>t;
fori(t)
{
ll n,l,r;
cin>>n>>l>>r;
vector<ll>v;
v.push_back(0);
ll sum=0;
forj(n)
{
if((n-1-j)>0)
{
sum=sum+2*(n-1-j);
v.push_back(sum);
}
}
auto it=lower_bound(v.begin(),v.end(),l);
it--;
ll dis=distance(v.begin(),it);
ll ix=*(it);
ll ct=r-l+1;
ll alpha=dis+1;
ll beta=alpha+1;
ix=ix+1;
ll ar=n*(n-1)+1;
while(ix<=r)
{
if(ix==ar)
{
cout<<1;
break;
}
else
{
if(ix>=l)
{
if(ix%2==1)
{
cout<<alpha<<" ";
}
else
{
cout<<beta<<" ";
}
}
if(ix%2==0 && beta==n)
{
alpha++;
beta=alpha+1;
ix++;
}
else if(ix%2==0)
{
ix++;
beta++;
}
else
ix++;
}
}
cout<<endl;
}
}
1337B - Kana and Dragon Quest game | 137C - History |
1443C - The Delivery Dilemma | 6C - Alice Bob and Chocolate |
1077C - Good Array | 285B - Find Marble |
6A - Triangle | 1729A - Two Elevators |
1729B - Decode String | 1729C - Jumping on Tiles |
1729E - Guess the Cycle Size | 553B - Kyoya and Permutation |
1729D - Friends and the Restaurant | 1606C - Banknotes |
580C - Kefa and Park | 342A - Xenia and Divisors |
1033A - King Escape | 39D - Cubical Planet |
1453A - Cancel the Trains | 645A - Amity Assessment |
1144A - Diverse Strings | 1553B - Reverse String |
1073A - Diverse Substring | 630N - Forecast |
312B - Archer | 34D - Road Map |
630I - Parking Lot | 160B - Unlucky Ticket |
371B - Fox Dividing Cheese | 584B - Kolya and Tanya |